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Assignment 0—solutions

Exercise 1

Let Xi, i ∈ N be i.i.d. with Xi ∼ N (0, σ2) for some σ2 > 0. Let us define Y0 = 1 and

Yn = exp
(

n∑
i=1

Xi − n
σ2

2

)
, n ∈ N.

1) Show that (Yn)n is a martingale.

2) Snow that Yn −→ 0, P−a.s. for n → ∞.

3) Is the process (Yn)n uniformly integrable? Why/why not?

4) Assume now that Xi ∼ N (µ, σ2) for some µ ∈ R. For which values of (µ, σ2) ∈ R× (0, ∞) does point 2) still hold?

1) (Yn)n is clearly adapted and integrable since Xi, i ∈ N, are normally distributed. We verify the
martingale property. Let us fix n ∈ N, n ≥ 2 :
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)
E exp (Xn+1) = exp

(
n∑

i=1
Xi − (n + 1)σ2

2

)
exp

(
σ2

2

)
= Yn, P − a.s..

The case n = 1 can be verified analogously.

2) We have

Yn = exp
(

n∑
i=1

Xi − n
σ2

2

)
= exp

(
n

[
1
n

n∑
i=1

Xi − σ2

2

])
, n ∈ N.

The SLLN yields 1
n

∑n
i=1 Xi −→ 0 P-a.s.. The result then follows immediately.

3) Uniform integrability and convergence P-almost surely to 0 would imply convergence in L1 to 0.
However, this does not hold true since E|Yn| = 1 for any n ∈ N ∪ {0}.

4) We can write

Yn = exp
(

n∑
i=1

Xi − n
σ2

2

)
= exp

(
n

[
1
n

n∑
i=1

(Xi − µ) −
(

σ2

2 − µ

)])
, n ∈ N.

Using the same argument, we see that Yn −→ 0, P−a.s. holds if µ < σ2/2.

Exercise 2

Let (Ω, F ,P) be a probability space with a (discrete) filtration F = (Fn, n ∈ N ∪ {0}). Let τn be a stopping time for
every n ∈ N. Which of the following are always stopping times?

1) supn∈N τn.
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2) infn∈N τn.

We have {
sup
n∈N

τn ≤ m

}
=
⋂

n∈N
{τn ≤ m} ∈ Fm, m ∈ N.

Similarly, {
inf
n∈N

τn ≤ m

}
=
⋃

n∈N
{τn ≤ m} ∈ Fm, m ∈ N.

Hence, both variables are stopping times.

Let us emphasize that the infimum of stopping times is, in general, NOT a stopping time in continuous-
time setting.

Exercise 3

Let Xi, i ∈ N be i.i.d. random variables with P(Xi = 1) = P(Xi = −1) = 1/2. Let us set S0 = 0 and

Sn =
n∑

i=1
Xi, n ∈ N.

(i.e., (Sn)n is a simple symmetric random walk.) Let us have two finite constants A ∈ Z, A < 0 and B ∈ Z, B > 0 and
let us set

τS,[B,∞) = inf {n ∈ N : Sn ≥ B} ,

τS,(A,B)C = inf {n ∈ N : Sn /∈ (A, B)} .

You may assume (without having to prove it) that τS,[B,∞) < ∞ and τS,(A,B)C < ∞ P-a.s..

1) Show that it doesn’t hold ES0 = ESτS,[B,∞) .

2) Recall the statement of optional sampling theorem.

3) Why can’t we use optional sampling theorem for point 1.)?

4) Show that 0 = ES0 = ESτS,(A,B)C
.

5) Compute P(SτS,(A,B)C
= A) and P(SτS,(A,B)C

= B).

1) We clearly have that ES0 = 0 and, since τS,[B,∞) < ∞, we have SτS,[B,∞) = B, P-a.s.. Therefore,
ESτS,[B,∞) = B ̸= 0 = ES0.

2) and 3) : It is clear that the assumptions of optional sampling theorem are never satisfied. The process
(Sn)n is not UI and the stopping time τS,[B,∞) (though being finite P-a.s.) is not bounded.

4) The stopped process (Sn∧τS,(A,B)C
)n is bounded and hence uniformly integrable. It follows from optional

stopping theorem that

0 = ES0 = ESn∧τS,(A,B)C
, n ∈ N.

Passing to the limit as n → ∞ and using the DCT (exploiting again that (Sn∧τS,(A,B)C
)n is bounded) yields

0 = ES0 = ESτS,(A,B)C .
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5) The previous gives (recall that τS,(A,B)C < ∞, P−a.s.)

0 = ES0 = ESτS,(A,B)C = A · P(SτS,(A,B)C
= A) + B ·

[
1 − P(SτS,(A,B)C

= A)
]

.

It follows that
P(SτS,(A,B)C

= A) = B

B − A

and
P(SτS,(A,B)C

= B) = 1 − P(SτS,(A,B)C
= A) = A

A − B
.

Exercise 4

Recall martingale convergence theorems and martingale inequalities.
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