Brownian motion and Stochastic Calculus Dylan Possamaï

Assignment 0—solutions

Exercise 1

Let $X_i, i \in \mathbb{N}$ be i.i.d. with $X_i \sim \mathcal{N}(0, \sigma^2)$ for some $\sigma^2 > 0$. Let us define $Y_0 = 1$ and

$$Y_n = \exp\left(\sum_{i=1}^n X_i - n\frac{\sigma^2}{2}\right), \quad n \in \mathbb{N}.$$

- 1) Show that $(Y_n)_n$ is a martingale.
- 2) Snow that $Y_n \longrightarrow 0$, \mathbb{P} -a.s. for $n \to \infty$.
- 3) Is the process $(Y_n)_n$ uniformly integrable? Why/why not?
- 4) Assume now that $X_i \sim \mathcal{N}(\mu, \sigma^2)$ for some $\mu \in \mathbb{R}$. For which values of $(\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$ does point 2) still hold?

1) $(Y_n)_n$ is clearly adapted and integrable since $X_i, i \in \mathbb{N}$, are normally distributed. We verify the martingale property. Let us fix $n \in \mathbb{N}$, $n \ge 2$:

$$\mathbb{E}\left[Y_{n+1}\middle|\mathcal{F}_n^Y\right] = \mathbb{E}\left[\exp\left(\sum_{i=1}^n X_i - (n+1)\frac{\sigma^2}{2}\right)\exp\left(X_{n+1}\right)\middle|\mathcal{F}_n^Y\right] = \exp\left(\sum_{i=1}^n X_i - (n+1)\frac{\sigma^2}{2}\right)\mathbb{E}\left[\exp\left(X_{n+1}\right)\middle|\mathcal{F}_n^Y\right]$$
$$= \exp\left(\sum_{i=1}^n X_i - (n+1)\frac{\sigma^2}{2}\right)\mathbb{E}\exp\left(X_{n+1}\right) = \exp\left(\sum_{i=1}^n X_i - (n+1)\frac{\sigma^2}{2}\right)\exp\left(\frac{\sigma^2}{2}\right) = Y_n, \quad \mathbb{P}-\mathbf{a.s.}.$$

The case n = 1 can be verified analogously.

2) We have

$$Y_n = \exp\left(\sum_{i=1}^n X_i - n\frac{\sigma^2}{2}\right) = \exp\left(n\left[\frac{1}{n}\sum_{i=1}^n X_i - \frac{\sigma^2}{2}\right]\right), \quad n \in \mathbb{N}.$$

The SLLN yields $\frac{1}{n} \sum_{i=1}^{n} X_i \longrightarrow 0$ P-a.s.. The result then follows immediately.

3) Uniform integrability and convergence \mathbb{P} -almost surely to 0 would imply convergence in \mathbb{L}^1 to 0. However, this does not hold true since $\mathbb{E}|Y_n| = 1$ for any $n \in \mathbb{N} \cup \{0\}$.

4) We can write

$$Y_n = \exp\left(\sum_{i=1}^n X_i - n\frac{\sigma^2}{2}\right) = \exp\left(n\left[\frac{1}{n}\sum_{i=1}^n (X_i - \mu) - \left(\frac{\sigma^2}{2} - \mu\right)\right]\right), \quad n \in \mathbb{N}.$$

Using the same argument, we see that $Y_n \longrightarrow 0$, \mathbb{P} -a.s. holds if $\mu < \sigma^2/2$.

Exercise 2

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a (discrete) filtration $\mathbb{F} = (\mathcal{F}_n, n \in \mathbb{N} \cup \{0\})$. Let τ_n be a stopping time for every $n \in \mathbb{N}$. Which of the following are always stopping times?

1) $\sup_{n\in\mathbb{N}}\tau_n$.

2) $\inf_{n\in\mathbb{N}}\tau_n$.

We have

$$\left\{\sup_{n\in\mathbb{N}}\tau_n\leq m\right\}=\bigcap_{n\in\mathbb{N}}\{\tau_n\leq m\}\in\mathcal{F}_m,\quad m\in\mathbb{N}.$$

Similarly,

$$\left\{\inf_{n\in\mathbb{N}}\tau_n\leq m\right\}=\bigcup_{n\in\mathbb{N}}\{\tau_n\leq m\}\in\mathcal{F}_m,\quad m\in\mathbb{N}.$$

Hence, both variables are stopping times.

Let us emphasize that the infimum of stopping times is, in general, NOT a stopping time in continuoustime setting.

Exercise 3

Let $X_i, i \in \mathbb{N}$ be i.i.d. random variables with $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$. Let us set $S_0 = 0$ and

$$S_n = \sum_{i=1}^n X_i, \quad n \in \mathbb{N}.$$

(i.e., $(S_n)_n$ is a simple symmetric random walk.) Let us have two finite constants $A \in \mathbb{Z}, A < 0$ and $B \in \mathbb{Z}, B > 0$ and let us set

$$\begin{aligned} \tau_{S,[B,\infty)} &= \inf \left\{ n \in \mathbb{N} : S_n \geq B \right\}, \\ \tau_{S,(A,B)^C} &= \inf \left\{ n \in \mathbb{N} : S_n \notin (A,B) \right\}. \end{aligned}$$

You may assume (without having to prove it) that $\tau_{S,[B,\infty)} < \infty$ and $\tau_{S,(A,B)^C} < \infty$ P-a.s..

- 1) Show that it doesn't hold $\mathbb{E}S_0 = \mathbb{E}S_{\tau_{S,[B,\infty)}}$.
- 2) Recall the statement of optional sampling theorem.
- 3) Why can't we use optional sampling theorem for point 1.)?
- 4) Show that $0 = \mathbb{E}S_0 = \mathbb{E}S_{\tau_{S,(A,B)C}}$.
- 5) Compute $\mathbb{P}(S_{\tau_{S,(A,B)}C} = A)$ and $\mathbb{P}(S_{\tau_{S,(A,B)}C} = B)$.

1) We clearly have that $\mathbb{E}S_0 = 0$ and, since $\tau_{S,[B,\infty)} < \infty$, we have $S_{\tau_{S,[B,\infty)}} = B$, \mathbb{P} -a.s.. Therefore, $\mathbb{E}S_{\tau_{S,[B,\infty)}} = B \neq 0 = \mathbb{E}S_0$.

2) and 3): It is clear that the assumptions of optional sampling theorem are never satisfied. The process $(S_n)_n$ is not UI and the stopping time $\tau_{S,[B,\infty)}$ (though being finite \mathbb{P} -a.s.) is not bounded.

4) The stopped process $(S_{n \wedge \tau_{S,(A,B)}C})_n$ is bounded and hence uniformly integrable. It follows from optional stopping theorem that

$$0 = \mathbb{E}S_0 = \mathbb{E}S_{n \wedge \tau_{S(A,B)C}}, \quad n \in \mathbb{N}.$$

Passing to the limit as $n \to \infty$ and using the DCT (exploiting again that $(S_{n \wedge \tau_{S,(A,B)}C})_n$ is bounded) yields

$$0 = \mathbb{E}S_0 = \mathbb{E}S\tau_{S,(A,B)^C}$$

5) The previous gives (recall that $\tau_{S,(A,B)^C} < \infty$, \mathbb{P} -a.s.)

$$0 = \mathbb{E}S_0 = \mathbb{E}S\tau_{S,(A,B)^C} = A \cdot \mathbb{P}(S_{\tau_{S,(A,B)^C}} = A) + B \cdot \left[1 - \mathbb{P}(S_{\tau_{S,(A,B)^C}} = A)\right].$$

It follows that

$$\mathbb{P}(S_{\tau_{S,(A,B)^C}} = A) = \frac{B}{B - A}$$

and

$$\mathbb{P}(S_{\tau_{S,(A,B)^{C}}} = B) = 1 - \mathbb{P}(S_{\tau_{S,(A,B)^{C}}} = A) = \frac{A}{A - B}.$$

Exercise 4

Recall martingale convergence theorems and martingale inequalities.